
Mill: A Build Tool based on
Pure Functional Programming

Li Haoyi, Scala.Love 18 April 2020
(another 3 minutes, we haven’t started yet)

Developer Tools at Databricks
- Heavy users of Scala, Bazel build tool
- >1MLOC of Scala, Python, Jsonnet, Javascript,

Docker, Kubernetes, Cloudformation, ...

Previously at Dropbox
- Python webdev! Coffeescript webdev!
- Developer tooling, integration testing, static

program analysis, ..

Open source
- Ammonite, Mill, Fastparse, Scalatags, uPickle,
- Requests-Scala, OS-Lib, PPrint, Fansi, Cask,
- uTest, sourcecode, ...

Who am I?

Agenda
What is the Mill Build Tool?

What is Functional Programming All About?

How are Build Tools similar to FP?

How are Build Tools not similar to FP?

How the Mill Build Tool uses FP

Agenda
What is the Mill Build Tool?

What is Functional Programming All About?

How are Build Tools similar to FP?

How are Build Tools not similar to FP?

How the Mill Build Tool uses FP

What is Mill

An embedded Scala library, built on top of Ammonite Scala Scripts

Heavily inspired by SBT, Bazel, Scala.Rx, other things

Just plain Scala*

Simple Build
// build.sc

import mill._, scalalib._

object foo extends ScalaModule{

 def scalaVersion = "2.13.1"

}

Simple Build
// build.sc

import mill._, scalalib._

object foo extends ScalaModule{

 def scalaVersion = "2.13.1"

}

Module in foo/, sources in foo/src/

Set Scala version to 2.13

Simple Build
// build.sc

import mill._, scalalib._

object foo extends ScalaModule{

 def scalaVersion = "2.13.1"

}

$ mill foo.compile

$ mill foo.run

$ mill foo.assembly

Module in foo/, sources in foo/src/

Set Scala version to 2.13

Simple Build with test
// build.sc

import mill._, scalalib._

object foo extends ScalaModule{

 def scalaVersion = "2.13.1"

 object test extends Tests{

 def ivyDeps = Agg(ivy"com.lihaoyi::utest::0.7.3")

 def testFrameworks = Seq("utest.runner.Framework")

 }

}

$ mill foo.compile

$ mill foo.run

$ mill foo.assembly

$ mill foo.test

$ mill foo.test.compile

Set Scala version to 2.13

Module in foo/, sources in foo/src/

Test suite in foo/test/src

Test library dependency
and runner

Multi-module build
import mill._, scalalib._

trait AppModule extends ScalaModule{

 def scalaVersion = "2.13.1"

}

object shared extends AppModule

object foo extends AppModule{

 def moduleDeps = Seq(shared)

}

object bar extends AppModule{

 def moduleDeps = Seq(shared)

}

$ mill shared.compile

$ mill shared.run

$ mill shared.assembly

$ mill foo.compile

$ mill foo.run

$ mill foo.assembly

$ mill bar.compile

$ mill bar.run

$ mill bar.assembly

Multi-module build
import mill._, scalalib._

trait AppModule extends ScalaModule{

 def scalaVersion = "2.13.1"

}

object shared extends AppModule

object foo extends AppModule{

 def moduleDeps = Seq(shared)

 def resources = T.sources{

 os.copy(bar.assembly().path, T.dest / "bar.jar")

 Seq(PathRef(T.dest))

 }

}

object bar extends AppModule{

 def moduleDeps = Seq(shared)

}

$ mill shared.compile

$ mill shared.run

$ mill shared.assembly

$ mill foo.compile

$ mill foo.run

$ mill foo.assembly

$ mill bar.compile

$ mill bar.run

$ mill bar.assembly

Make foo include bar’s
assembly jar in its resources

Things Mill Does
Resolve libraryDependencies to make Dependency Jars

Compile Source files and Dependency Jars to make Class files

Run Code Generation to make Generated Source Files

Test Class files and Dependency Jars to make Test Results

Zip Class files to make Jars

Zip Class files and Dependency Jars to make Assemblies

Package Jars and Dependency Jars to make Docker Containers

...

Fast: background daemon is the default, keeps JVM warm and responsive
- Response times ~200ms

Out of the box functionality: compile, test, executable assemblies, publishing, …
- No plugins required, provides everything you need!

Battle-tested in the Wild
- Used in the Ammonite build (179 submodules), Kotlin/Java builds, static site

generators, web asset pipelines, constructing PDFs, ...

Intuitive and trivially customizable
- Write plain-old-Scala, get all the good stuff free: caching, file-watching, parallelism, ...
- “ I am so happy every time I have to tweak a little build stuff and find that my project

uses Mill! Build system easy mode FTW” - Rex Kerr

Why Mill is interesting?

Agenda
What is the Mill Build Tool?

What is Functional Programming All About?

How are Build Tools similar to FP?

How are Build Tools not similar to FP?

How the Mill Build Tool uses FP

What’s Functional Programming All About?
Haskell?

Ocaml?

Clojure?

Scala?

F#?

Scheme?

What’s Functional Programming Not All About?
Macros/Metaprogramming?

Parentheses?

Powerful Type Systems?

Monads?

Writing Interpreters?

Constructing Programs?

What’s Functional Programming Not All About?
Macros/Metaprogramming? Scala, Haskell, OCaml don’t use macros all that much

Parentheses?

Powerful Type Systems?

Monads?

Writing Interpreters?

Constructing Programs?

What’s Functional Programming Not All About?
Macros/Metaprogramming? Scala, Haskell, OCaml don’t use macros all that much

Parentheses? Haskell, Ocaml, F# don’t have many parentheses

Powerful Type Systems?

Monads?

Writing Interpreters?

Constructing Programs?

What’s Functional Programming Not All About?
Macros/Metaprogramming? Scala, Haskell, OCaml don’t use macros all that much

Parentheses? Haskell, Ocaml, F# don’t have many parentheses

Powerful Type Systems? Most Lisps have no typechecker

Monads?

Writing Interpreters?

Constructing Programs?

What’s Functional Programming Not All About?
Macros/Metaprogramming? Scala, Haskell, OCaml don’t use macros all that much

Parentheses? Haskell, Ocaml, F# don’t have many parentheses

Powerful Type Systems? Most Lisps have no typechecker

Monads? Ocaml/Lisp don’t use monads much

Writing Interpreters?

Constructing Programs?

What’s Functional Programming Not All About?
Macros/Metaprogramming? Scala, Haskell, OCaml don’t use macros all that much

Parentheses? Haskell, Ocaml, F# don’t have many parentheses

Powerful Type Systems? Most Lisps have no typechecker

Monads? Ocaml/Lisp don’t use monads much

Writing Interpreters? Ocaml doesn’t do this much, most are written in C

Constructing Programs?

What’s Functional Programming Not All About?
Macros/Metaprogramming? Scala, Haskell, OCaml don’t use macros all that much

Parentheses? Haskell, Ocaml, F# don’t have many parentheses

Powerful Type Systems? Most Lisps have no typechecker

Monads? Ocaml/Lisp don’t use monads much

Writing Interpreters? Ocaml doesn’t do this much, most are written in C

Constructing Programs? PHP templated Javascript fragments aren’t FP

Case Study: Michael Chu’s Classic Tiramisu
http://www.cookingforengineers.com/recipe/60/The-Classic-Tiramisu-original-recipe

Tiramisu Presented Two Ways: Imperative
1. Begin by assembling four large egg yolks, 1/2 cup sweet marsala wine, ...
2. Stir two tablespoons of granulated sugar into the espresso and put it in the

refrigerator to chill.
3. Whisk the egg yolks
4. Pour in the sugar and wine and whisked briefly until it was well blended.
5. Pour some water into a saucepan and set it over high heat until it began to

boil.
6. Lowering the heat to medium, place the heatproof bowl over the water and

stirred as the mixture began to thicken and smooth out.
7. Whip the heavy cream until soft peaks.

...

Tiramisu Presented Two Ways: Imperative
def make_tiramisu(eggs, sugar1, wine, cheese, cream, fingers, espresso, sugar2, cocoa):

 dissolve(sugar2, espresso)

 whisk(eggs)

 beat(eggs, sugar1, wine)

 whisk(eggs) # over steam

 whip(cream)

 beat(cheese)

 beat(eggs, cheese)

 fold(eggs, cream)

 assemble(eggs, fingers)

 sift(eggs, cocoa)

 refrigerate(eggs)

 return eggs # it's now a tiramisu

Refactoring Imperative Recipes
dissolve(sugar2, espresso)

whisk(eggs)

beat(eggs, sugar1, wine)

whisk(eggs) # over steam

whip(cream)

beat(cheese)

beat(eggs, cheese)

fold(eggs, cream)

assemble(eggs, fingers)

sift(eggs, cocoa)

refrigerate(eggs)

return eggs # it's now a tiramisu

If I have two people to make this tiramisu, which
parts can I start working on in parallel?

After beating the eggs and cheese, I realize I
bought the wrong kind of cream. What work do I
need to re-do, and with what ingredients?

I spilled the bowl after beating in the mascapone
cheese into the egg mixture; what ingredients do
I need to recover?

Tiramisu Presented Two Ways: Functional

Tiramisu Presented Two Ways: Functional

Tiramisu Presented Two Ways: Functional
def make_tiramisu(eggs, sugar1, wine, cheese, cream, fingers, espresso, sugar2, cocoa):

 return refrigerate(

 sift(

 assemble(

 fold(

 beat(

 whisk(# over steam

 beat(beat(eggs), sugar1, wine)

),

 beat(cheese)

),

 whip(cream)

),

 soak2seconds(fingers, dissolve(sugar2, espresso))

),

 cocoa

)

)

Tiramisu Presented Two Ways: Functional

Tiramisu Presented Two Ways: Functional
def make_tiramisu(eggs, sugar1, wine, cheese, cream, fingers, espresso, sugar2, cocoa):

 beat_eggs = beat(eggs)

 mixture = beat(beat_eggs, sugar1, wine)

 whisked = whisk(mixture)

 beat_cheese = beat(cheese)

 cheese_mixture = beat(whisked, beat_cheese)

 whipped_cream = whip(cream)

 folded_mixture = fold(cheese_mixture, whipped_cream)

 sweet_espresso = dissolve(sugar2, espresso)

 wet_fingers = soak2seconds(fingers, sweet_espresso)

 assembled = assemble(folded_mixture, wet_fingers)

 complete = sift(assembled, cocoa)

 ready_tiramisu = refrigerate(complete)

 return ready_tiramisu

Tiramisu Presented Two Ways

Imperative
dissolve(sugar2, espresso)

whisk(eggs)

beat(eggs, sugar1, wine)

whisk(eggs) # over steam

whip(cream)

beat(cheese)

beat(eggs, cheese)

fold(eggs, cream)

assemble(eggs, fingers)

sift(eggs, cocoa)

refrigerate(eggs)

return eggs # it's now a tiramisu

Functional
beat_eggs = beat(eggs)

mixture = beat(beat_eggs, sugar1, wine)

whisked = whisk(mixture)

beat_cheese = beat(cheese)

cheese_mixture = beat(whisked, beat_cheese)

whipped_cream = whip(cream)

folded_mixture = fold(cheese_mixture, whipped_cream)

sweet_espresso = dissolve(sugar2, espresso)

wet_fingers = soak2seconds(fingers, sweet_espresso)

assembled = assemble(folded_mixture, wet_fingers)

complete = sift(assembled, cocoa)

ready_tiramisu = refrigerate(complete)

return ready_tiramisu

FP is about Dataflow vs Control Flow

Imperative

- Sequence of Steps

- Unclear where the ordering matters, and
where it doesn’t

- Dependencies between steps implicit in
the ordering of the steps

Functional

- Dependency Graph of Steps

- Trivially obvious which steps must happen
before each other steps

- Dependencies betweens steps explicit in
the graph structure

Refactoring Functional Recipes
beat_eggs = beat(eggs)

mixture = beat(beat_eggs, sugar1, wine)

whisked = whisk(mixture)

beat_cheese = beat(cheese)

cheese_mixture = beat(whisked, beat_cheese)

whipped_cream = whip(cream)

folded_mixture = fold(cheese_mixture, whipped_cream)

sweet_espresso = dissolve(sugar2, espresso)

wet_fingers = soak2seconds(fingers, sweet_espresso)

assembled = assemble(folded_mixture, wet_fingers)

complete = sift(assembled, cocoa)

ready_tiramisu = refrigerate(complete)

return ready_tiramisu

If I have two people to make this tiramisu, which
parts can I start working on in parallel?

My expresso hasn't arrived yet; what can I start
cooking first?

I spilled the bowl after beating in the mascapone
cheese into the egg mixture; what ingredients do
I need to recover?

Kitchen Refactoring
If I have two people to make this tiramisu, which parts can I start working on in
parallel?

Kitchen Refactoring
After beating the eggs and cheese, I realize I bought the wrong kind of cream.
What work do I need to re-do, and with what ingredients?

Kitchen Refactoring
I spilled the bowl after beating in the mascapone cheese into the egg mixture;
what ingredients do I need to recover?

Functional Programming is about Dataflow
We are thinking about the dependencies between parts of your program, rather
than lists of steps that have to be done

Makes parallelization, re-ordering, and incremental re-computation trivial

Often serialized to a linear sequence of lines of code, but the core structure is the
dataflow graph

Agenda
What is Mill?

What is Functional Programming All About?

How are Build Tools similar to FP?

How are Build Tools not similar to FP?

How the Mill Build Tool uses FP

What Are Build Tools About
Ant

Maven

Groovy

SBT

Bazel

Pants

Mill

...

Build Tools Do Things
Resolve libraryDependencies to make Dependency Jars

Compile Source files and Dependency Jars to make Class files

Run Code Generation to make Generated Source Files

Test Class files and Dependency Jars to make Test Results

Zip Class files to make Jars

Zip Class files and Dependency Jars to make Assemblies

Package Jars and Dependency Jars to make Docker Containers

...

Build Tools Do Things
Resolve libraryDependencies to make Dependency Jars

Compile Source files and Dependency Jars to make Class files

Run Code Generation to make Generated Source Files

Test Class files and Dependency Jars to make Test Results

Zip Class files to make Jars

Zip Class files and Dependency Jars to make Assemblies

Package Jars and Dependency Jars to make Docker Containers

...

Build Tools Do Things

$DO_THING to $FOO and $BAR to make $OUTPUT

Build Tools Do Things

OUTPUT = DO_THING(FOO, BAR)

Build Tool vs Tiramisu Requirements
Parallelize different build steps so the overall
build completes faster

Someone changed a source file; what steps do I
need to do to re-generate all artifacts that are
affected by that change?

Someone wants to run tests and re-run them
every time their input files change; which files
should we watch?

If I have two people to make this tiramisu, which
parts can I start working on in parallel?

After beating the eggs and cheese, I realize I
bought the wrong kind of cream. What work do I
need to re-do, and with what ingredients?

I spilled the bowl after beating in the mascapone
cheese into the egg mixture; what ingredients do
I need to recover?

How are Build Tools similar to FP?
Builds are largely* made up of of pure functions: OUTPUT = DO_THING(FOO, BAR)

The ease that FP allows re-factoring, parallelizing and analyzing your computation
is exactly what a build tool needs to do!

While FP often helps humans do these things, a build tool needs to do them
automatically, but they’re really the same things

Agenda
What is the Mill Build Tool?

What is Functional Programming All About?

How are Build Tools similar to FP?

How are Build Tools not similar to FP?

How the Mill Build Tool uses FP

How are Build Tools not similar to FP?
Introspectability

Persistence

Long-lived Workers

Ad-hoc Overrides

How are Build Tools not similar to FP?
Introspectability

Persistence

Long-lived Workers

Ad-hoc Overrides

Introspectability
def make_tiramisu(eggs, sugar1, wine):

 beat_eggs = beat(eggs)

 mixture = beat(beat_eggs, sugar1, wine)

 whisked = whisk(mixture)

Pure functions are opaque, the only thing we can do is run them on their input

Introspectability
def make_tiramisu(eggs, sugar1, wine):

 beat_eggs = beat(eggs)

 mixture = beat(beat_eggs, sugar1, wine)

 whisked = whisk(mixture)

Pure functions are opaque, the only thing we can do is run them on their input

Build tools need to inspect the structure of your computation: to parallelize steps,
incrementally re-compute things, decide what inputs to watch

How are Build Tools not similar to FP?
Introspectability

Persistence

Long-lived Workers

Ad-hoc Overrides

Persistence
def make_tiramisu(eggs, sugar1, wine):

 beat_eggs = beat(eggs)

 mixture = beat(beat_eggs, sugar1, wine)

 whisked = whisk(mixture)

Pure functions have their intermediate values live in memory

Persistence
def make_tiramisu(eggs, sugar1, wine):

 beat_eggs = beat(eggs)

 mixture = beat(beat_eggs, sugar1, wine)

 whisked = whisk(mixture)

Pure functions have their intermediate values live in memory

Build tools output for each step needs to be serialized (how?), and saved
somewhere (where?) so the next time someone runs your build tool we can re-use
the results that had been computed before

How are Build Tools not similar to FP?
Introspectability

Persistence

Long-lived Workers

Ad-hoc Overrides

Long-lived Workers
def make_tiramisu(eggs, sugar1, wine):

 beat_eggs = beat(eggs)

 mixture = beat(beat_eggs, sugar1, wine)

 whisked = whisk(mixture)

Pure functions have no side effects and can be run any way we like

Long-lived Workers
def make_tiramisu(eggs, sugar1, wine):

 beat_eggs = beat(eggs)

 mixture = beat(beat_eggs, sugar1, wine)

 whisked = whisk(mixture)

Pure functions have no side effects and can be run any way we like

Build steps often require some amount of setup: your JVM needs to be warmed
up, your incremental compilation caches populated, your wkhtmltopdf worker
process spawned. Setup/teardown is often expensive, so we want to re-use
things. Sometimes concurrency is limited/disallowed (e.g. due to resource limits)

How are Build Tools not similar to FP?
Introspectability

Persistence

Long-lived Workers

Ad-hoc Overrides

Ad-hoc Overrides
def make_tiramisu(eggs, sugar1, wine):

 beat_eggs = beat(eggs)

 mixture = beat(beat_eggs, sugar1, wine)

 whisked = whisk(mixture)

A pure function’s parameters contains of everything you can do to customize it

Ad-hoc Overrides
def make_tiramisu(eggs, sugar1, wine):

 beat_eggs = beat(eggs)

 mixture = beat(beat_eggs, sugar1, wine)

 whisked = whisk(mixture)

A pure function’s parameters contains of everything you can do to customize it

Templated sequences of build steps often need ad-hoc customization: a custom
artifactName here, special javacOptions there, some weird code-generation step
over there, and for this one specific module we need to turn off incremental
compilation due to bugs in the incremental compiler.

How are Build Tools not similar to FP?
Introspectability

Persistence

Long-lived Workers

Ad-hoc Overrides

Agenda
What is the Mill Build Tool?

What is Functional Programming All About?

How are Build Tools similar to FP?

How are Build Tools not similar to FP?

How the Mill Build Tool uses FP

Naive Pure FP vs Mill Build Logic

Naive Pure Function

def makeTiramisu(eggs, sugar1, wine) = {

 val beatEggs = beat(eggs)

 val mixture =

 beat(beatEggs, sugar1, wine)

 val whisked = whisk(mixture)

}

Mill Module

trait TiramisuModule extends Module{

 def eggs = T.input{...}

 def sugar1 = T.input{...}

 def wine = T.input{...}

 def beatEggs = T{ beat(eggs()) }

 def mixture = T{

 beat(beatEggs(), sugar1(), wine())

 }

 def whisked = T{ whisk(mixture()) }

}

How the Mill build tool uses FP, with...
Introspectability

Persistence

Long-lived Workers

Ad-hoc Overrides

How the Mill build tool uses FP, with...
Introspectability

Persistence

Long-lived Workers

Ad-hoc Overrides

Introspectability via Free Applicative

Mill turns build steps (“targets”) into a Free Applicative structure, using the T{...} macro

def makeTiramisu(eggs, sugar1, wine) = {

 def beatEggs = T{ beat(eggs()) }

 def mixture = T{ beat(beatEggs(), sugar1(), wine()) }

 def whisked = T{ whisk(mixture()) }

}

Introspectability via Free Applicative

Mill turns build steps (“targets”) into a Free Applicative structure, using the T{...} macro

def makeTiramisu(eggs, sugar1, wine) = {

 def beatEggs = T{ beat(eggs()) }

 def mixture = T{ beat(beatEggs(), sugar1(), wine()) }

 def whisked = T{ whisk(mixture()) }

}

def makeTiramisu(eggs, sugar1, wine) = {

 val beatEggs = beat(eggs)

 val mixture = beat(beatEggs, sugar1, wine)

 val whisked = whisk(mixture)

}

Introspectability via Free Applicative

Mill turns build steps (“targets”) into a Free Applicative structure, using the T{...} macro

def makeTiramisu(eggs, sugar1, wine) = {

 def beatEggs = T{ beat(eggs()) }

 def mixture = T{ beat(beatEggs(), sugar1(), wine()) }

 def whisked = T{ whisk(mixture()) }

}

def makeTiramisu(eggs, sugar1, wine) = { // “idiom bracket” transformation

 def beatEggs = T.zipMap(eggs){ v1 => beat(v1) }

 def mixture = T.zipMap(beatEggs, sugar1, wine){ (v1, v2, v3) => beat(v1, v2, v3) }

 def whisked = T.zipMap(mixture){ v1 => whisk(v1) }

}

Introspectability via Free Applicative

Mill turns build steps (“targets”) into a Free Applicative structure, using the T{...} macro

def makeTiramisu(eggs, sugar1, wine) = {

 def beatEggs = T.zipMap(eggs){ v1 => beat(v1) }

 def mixture = T.zipMap(beatEggs, sugar1, wine){ (v1, v2, v3) => beat(v1, v2, v3) }

 def whisked = T.zipMap(mixture){ v1 => whisk(v1) }

}

beatEggs

sugar1

wine

beat

mixture
whisked

beat whisk

eggs

Introspectability via Free Applicative
Every node in the graph knows what its inputs are, and has an opaque function to
compute its output value

Less flexible than the Free Monad: the structure of the graph cannot depend on the
computed value of any node

beatEggs

sugar1

wine

beat

mixture
whisked

beat whisk

eggs

Introspectability via Free Applicative
Every node in the graph knows what its inputs are, and has an opaque function to
compute its output value

Less flexible than the Free Monad: the structure of the graph cannot depend on the
computed value of any node

beatEggs

sugar1

wine

beat

mixture
whisked

beat whisk

eggs

Introspectability via Free Applicative
Every node in the graph knows what its inputs are, and has an opaque function to
compute its output value

Less flexible than the Free Monad: the structure of the graph cannot depend on the
computed value of any node

Allows introspectability, parallelization, incremental computation, etc.

beatEggs

sugar1

wine

beat

mixture
whisked

beat whisk

eggs

How the Mill build tool uses FP, with...
Introspectability

Persistence

Long-lived Workers

Ad-hoc Overrides

Persistence: How?
Every Mill target defined via T{...} must return a type that is serializable

def T[V: upickle.default.ReadWriter](t: V) = ...

Persistence: How?
Every Mill target defined via T{...} must return a type that is serializable

def T[V: upickle.default.ReadWriter](t: V) = ...

Currently serialization is done via uPickle JSON, but could easily be done via
other formats (uPickle msgpack, Circe, whatever)

Persistence: Where?
Every target must take an implicit mill.define.Ctx containing a ctx.dest filesystem path

def T[V: upickle.default.ReadWriter](t: V)(implicit ctx: mill.define.Ctx) = ...

Persistence: Where?
Every target must take an implicit mill.define.Ctx containing a ctx.dest filesystem path

def T[V: upickle.default.ReadWriter](t: V)(implicit ctx: mill.define.Ctx) = ...

The mill.define.Ctx is provided automatically when your target lives inside a Module:

object myTiramisu extends Module{

 def eggs = T.input{...}

 def sugar1 = T.input{...}

 def wine = T.input{...}

 def beatEggs = T{ beat(eggs()) } // "out/myTiramisu/beatEggs/"

 def mixture = T{ beat(beatEggs(), sugar1(), wine()) } // "out/myTiramisu/mixture/"

 def whisked = T{ whisk(mixture()) } // "out/myTiramisu/whisked/"

}

ctx.dest also provides a place to put files on disk without risking collision!

How the Mill build tool uses FP, with...
Introspectability

Persistence

Long-lived Workers

Ad-hoc Overrides

Long Lived Workers
Mill supports the T.worker syntax to define a long lived worker:

object myTiramisu extends Module{

 def eggBeater = T.worker{setupMyEggBeater()}

 def eggs = T.input{...}

 def sugar1 = T.input{...}

 def wine = T.input{...}

 def beatEggs = T{ eggBeater.beat(eggs()) }

 def mixture = T{ eggBeater.beat(beatEggs(), sugar1(), wine()) }

 def whisked = T{ whisk(mixture()) }

}

Workers last as long as the Mill process, and can be re-used over and over. They
can also take inputs, like T{...} targets, and are invalidated when their inputs
change. Workers are kind of like objects, kind of like first-class functions!

How the Mill build tool uses FP, with...
Introspectability

Persistence

Long-lived Workers

Ad-hoc Overrides

Ad-hoc Overrides
Sets of similar build steps are constructed using traits
trait TiramisuModule extends Module{

 def eggs = T.input{...}

 def sugar1 = T.input{...}

 def wine = T.input{...}

 def beatEggs = T{ beat(eggs()) }

 def mixture = T{ beat(beatEggs(), sugar1(), wine()) }

 def whisked = T{ whisk(mixture()) }

}

object myTiramisu extends TiramisuModule{}

object yourTiramisu extends TiramisuModule{

 override def beatEggs = T{ preBeatEggsFromCarton() }

}

How the Mill build tool uses FP, with...
Introspectability

Persistence

Long-lived Workers

Ad-hoc Overrides

Conclusion
What is the Mill Build Tool?

What is Functional Programming All About?

How are Build Tools similar to FP?

How are Build Tools not similar to FP?

How the Mill Build Tool uses FP

Conclusion
Functional programming is thinking about dataflow, rather than control flow

- This makes refactoring, parallelism, analysis, etc. much easier

Build tools are also all about dataflow

- They benefit from all the same things that humans enjoy when using FP!

Build tools have additional concerns outside naive FP

- Introspectability, persistence, long-lived workers, ad-hoc overrides

Mill uses a mix of FP and OO features to get the best of both worlds

- Code as easy to read and intuitive as pure-FP programs, but with the speed,
efficiency, and featureset that people expect from a modern build tool

Mill: A Build Tool based on
Pure Functional Programming

Li Haoyi, Scala.Love 18 April 2020

New Book: Hands-on Scala Programming
A practical, project-based intro to Scala

Covers Mill, along with a ton of other things

If you liked what you saw, this will have more of it!

www.handsonscala.com

Coming soon, Summer 2020!

