
Metascala
A tiny DIY JVM

https://github.com/lihaoyi/Metascala

Li Haoyi
haoyi@dropbox.com

Scala Exchange
2nd Dec 2013



Who am I?

Li Haoyi

Write Python during the day

Write Scala at night



What is Metascala?

● A JVM

● in 3000 lines of Scala

● Which can load & interpret java programs

● And can interpret itself!



Size comparison

● Metascala: ~3,000 lines

● Avian JVM: ~80,000 lines

● OpenJDK: ~1,000,000 lines



Basic Usage

Closure’s class file 
is given to VM to 
load/parse/execute

Result is extracted 
from VM into host 
environment

Captured variables are serialized 
into VM’s environment

Create a new metascala VM
Plain Old Java Object

Any other classes necessary to 
evaluate the closure are loaded 
from the current ClasspathNo global state



It’s Metacircular! Need to give the outer VM more 
than the 1mb default heap

Simpler program avoids 
initializing the scala/java std 
libraries, which takes forever 
under double-interpretation.

Takes a while (~10s) to produce result

VM inside 
a VM!



Limitations

● Single-threaded

● Limited IO

● Slowww



Performance Comparison

● OpenJDK: 1.0x

● Metascala: ~100x

● Meta-Metascala: ~10000x



Why Metascala?

● Fun to explore the innards of the JVM

● An almost-fully secure Java runtime!

● Small size makes fiddling fun



Why Metascala?

● Fun to explore the innards of the JVM

● An almost-fully secure Java runtime!

● Small size makes fiddling fun



Quick Tour
Immutable Defs: ~380 loc

Native Bindings: ~650 loc

Bytecode SSA transform: ~650 loc

Runtime data structures: 
820 loc

Binary heap & Copying 
GC: 132 loc

DIY scala-pickling: 132 loc

“This is a VM”: 243 loc



Quick Tour: Tests

Tests for basic Java features

GC Fuzz-tests

Test Metacircularity!

Scala std lib usage



What’s a Heap?

Fig 1. A Heap



What’s a Garbage Collector?
Blit (copy) all roots to new heap

Scan the already 
copied things for 
more things and 
copy them too

Stop when you’ve 
scanned everything

Not pseudocode



Why Metascala?

● Fun to explore the innards of the JVM

● An almost-fully secure Java runtime!

● Small size makes fiddling fun



Limited Instruction Count



And Limited Memory!

Not an OOM Error!
We throw this ourselves



Explicitly defined capabilities

Every external call has to 
be explicitly defined and 
enabled



Security Characteristics

● Finite instruction count
● Finite memory
● Well-defined interface to outside world
● Doesn’t rely on Java Security Model at all!

● Still some holes…



Security Holes

● Classloader can read from anywhere
● Time spent classloading not accounted
● Memory spent on classes not accounted
● GC time not accounted
● “native” methods’ time/memory not 

accounted



Basic Problem

User code resource 
consumption is bounded

VM’s runtime resource 
usage can be made to 
grow arbitrarily large

User 
Code

Classes

Runtime Data 
Structures

Native method calls

Garbage Collector

Outside World



Possible Solution

Put a VM Inside a VM!

Works,

... but 10000x slowdown

Outside World

User 
Code

Classes

Runtime Data 
Structures

Native method calls

Garbage Collector

Outside World
Fixed Unaccounted Costs



Another Possible Solution

Move more components into
virtual runtime

Difficult to bootstrap correctly

WIP

Outside World

User Code

Classes

Runtime Data 
Structures

Native method calls

Garbage 
Collector



Why Metascala?

● Fun to explore the innards of the JVM

● An almost-fully secure Java runtime!

● Small size makes fiddling fun



Live Demo



Ugliness

● Long compile times

● Nasty JVM Interface

● Impossible Debugging



Long compile times

●

● 100 lines/s

● Twice as slow (50 lines/s) on my older 
machine!



Real World

Nasty JVM Interface

Ideal World

User Code

Std Library

VM

Initialized

Std Library

User Code

VM

Initialized

Nasty Language 
VM Interface

Lazy-
Initialization 
means repeated 
dives back into 
lib/native code

Clean Interfaces

Linear Initialization



Java’s dirty little secret

WTF! I’d never use these things!

The Verbosity of Java with the Safety of C



You probably do

Almost every Java program 
ever uses these things.

What happens if you don’t have 
them



Next Steps

● Maximize correctness
○ Implement Threads & IO
○ Fix bugs (GC, native calls, etc.)

● Solidify security characteristics
○ Still plenty of unaccounted-for memory/processing
○ Some can be hosted “within” VM itself

● Simplify Std-Lib/VM interface
○ Try using Android Std Lib?



Possible Experiments

● Native codegen instead of an interpreter?
○ Generate/exec native code through JNI
○ Heap is already a binary blob that can be easily 

passed to native code
● Bytecode transforms and optimizations?

○ Already in SSA form
● Continuations, Isolates, Value Classes?
● Port the whole thing to Scala.Js?



Metascala: a tiny DIY JVM

Ask me about:
● Single Static Assignment form
● Copying Garbage Collection
● sun.misc.Unsafe
● Warts of the .class file format
● Capabilities-based security
● Abandoned approaches


