
Li Haoyi, PNWScala 14 Nov 2014

Hands on Scala.js

Hands on Scala.js: Agenda
● Intro to Scala.js
● Interactive Web Pages
● Cross-platform libraries
● Client-server integration
● Wrap Up

Intro to Scala.js
● Intro to Scala.js
● Interactive Web Pages
● Cross-platform libraries
● Client-server integration
● Wrap Up

Intro to Scala.js
● Who

● What

● Where

● When

● Why

Intro to Scala.js: Who
● Li Haoyi

○ I work at Dropbox
○ Come talk to me about legacy CoffeeScript code
○ ~10 commits in scala-js/scala-js

● @sjrd/@gzm0
○ Real authors
○ ~2000 commits in scala-js/scala-js

https://github.com/scala-js/scala-js
https://github.com/scala-js/scala-js

Intro to Scala.js: What
● Scala -> Javascript Compiler

○ Run Scala code in the web browser!

● Respectable Performance
○ 1-3x slower than raw JS, 10x slower than Scala-JVM

■ Probably still 5x faster than python
○ 150-400kb non-gzipped executables

■ Mostly Scala’s bloated collections library

Intro to Scala.js: What
def main() = {
 var x = 0
 while(x < 999){
 x = x + "2".toInt
 }
 println(x)
}

Intro to Scala.js: What
ScalaJS.c.LExample$.prototype.main__V = (function() {
 var x = 0;
 while ((x < 999)) {
 x = ((x + new ScalaJS.c.sci_StringOps().init___T(
 ScalaJS.m.s_Predef().augmentString__T__T("2")
).toInt__I()) | 0)
 };
 ScalaJS.m.s_Predef().println__O__V(x)
});

Intro to Scala.js: What
be.prototype.main=function(){

 for(var a=0;999>a;)

 a=a+(new de).g(S(L(),"2")).ne()|0;

 ee(); L();

 var b=F(fe); ge();

 a=(new he).g(w(a)); b=bc(0,J(q(b,[a])));

 ie(bc(L(),J(q(F(fe),[je(ke(ge().Vg),b)]))))

}

Intro to Scala.js: Where
● http://www.scala-js.org/

● https://github.com/scala-js/scala-js

● https://groups.google.com/forum/#!forum/scala-js

● http://www.scala-js-fiddle.com/

http://www.scala-js.org/
http://www.scala-js.org/
https://github.com/scala-js/scala-js
https://github.com/scala-js/scala-js
https://groups.google.com/forum/#!forum/scala-js
https://groups.google.com/forum/#!forum/scala-js
http://www.scala-js-fiddle.com/
http://www.scala-js-fiddle.com/

Intro to Scala.js: Where
● Scala.js extends the reach of your Scala

○ Play Websites
○ Node.js modules
○ Chrome Extensions
○ Autodesk Fusion plugins
○ Firefox OS?

● Not just the JVM!

https://github.com/vmunier/play-with-scalajs-example
https://github.com/vmunier/play-with-scalajs-example
https://github.com/rockymadden/scala-node
https://github.com/rockymadden/scala-node
https://github.com/benjaminjackman/looty
https://github.com/benjaminjackman/looty
https://groups.google.com/forum/#!topic/scala-js/W6U0PFeBrdw
https://groups.google.com/forum/#!topic/scala-js/W6U0PFeBrdw

Intro to Scala.js: When
● June 2013: Announced at Scaladays

● Sept 2013: I got involved in

● Dec 2013: v0.1 released at ScalaXchange

● Working towards v1.0 now

Intro to Scala.js: Why

Intro to Scala.js: Why

Intro to Scala.js: Why

Intro to Scala.js: Why

Intro to Scala.js: Why

Intro to Scala.js: Why

Intro to Scala.js: Why

Opal

WebSharper

Intro to Scala.js: Why
● Javascript is =(

○ Rather verbose
○ Too flexible
○ Hard to write tools
○ Scary to refactor

● Scala is =)

Interactive Web Pages
● Intro to Scala.js
● Interactive Web Pages
● Cross-platform libraries
● Client-server integration
● Wrap Up

Live Coding
 Interactive Web Pages

https://github.com/lihaoyi/workbench-example-app

https://github.com/lihaoyi/workbench-example-app
https://github.com/lihaoyi/workbench-example-app

Web Page Takeaways
● Scala.js works

○ Conception
○ Debugging
○ Publishing

● HTML generation using Scalatags rocks
● Working directly with the DOM is much

easier with types

Canvas Demos
● Retro Games

● Roll

● Ray Tracer

http://lihaoyi.github.io/scala-js-games/
http://lihaoyi.github.io/scala-js-games/
http://lihaoyi.github.io/roll/
http://lihaoyi.github.io/roll/
http://www.scala-js-fiddle.com/gist/9443f8e0ecc68d1058ad/RayTracer.scala
http://www.scala-js-fiddle.com/gist/9443f8e0ecc68d1058ad/RayTracer.scala

Cross-platform libraries
● Intro to Scala.js
● Interactive Web Pages
● Cross-platform libraries
● Client-server integration
● Wrap Up

Cross-platform libraries

Cross-platform libraries
● Scalatags

○ HTML Generation
● uTest

○ Unit Testing
● uPickle

○ Serialization
● Scala.Rx

○ Change Propagation

● Scalaz
○ Hardcore FP

● Shapeless
○ Hardcore Genericity

● Monocle
○ Lenses

● Parboiled2
○ Parser Combinators

https://github.com/lihaoyi/scalatags
https://github.com/lihaoyi/scalatags
https://github.com/lihaoyi/utest
https://github.com/lihaoyi/utest
https://github.com/lihaoyi/upickle
https://github.com/lihaoyi/upickle
https://github.com/lihaoyi/scala.rx
https://github.com/lihaoyi/scala.rx
https://github.com/japgolly/scalaz#scalaz-on-scalajs
https://github.com/japgolly/scalaz#scalaz-on-scalajs
https://groups.google.com/forum/#!searchin/scala-js/shapeless/scala-js/dldA3_q0WKg/_NdwwbLYRxcJ
https://groups.google.com/forum/#!searchin/scala-js/shapeless/scala-js/dldA3_q0WKg/_NdwwbLYRxcJ
https://github.com/japgolly/Monocle
https://github.com/japgolly/Monocle

Can/Cannot Use

Can Use Can’t Use

java.lang.* j.l.Thread, j.l.Runtime

scala.* s.c.parallel, s.tools.

Macros: upickle, async Reflection: pickling, akka

Scala: Scalaz, Scalatags Java: Scalatest, Scalate

XMLHttpRequest, DOM,
WebGL, Canvas

Netty, Spray, Swing,
OpenGL

IntelliJ, SBT Yourkit, VisualVM

Live Coding
 Cross-Platform Library

https://github.com/lihaoyi/utest-example-module

https://github.com/lihaoyi/utest-example-module
https://github.com/lihaoyi/utest-example-module

Library Takeaways
● Cross-platform libraries targeting JS/JVM

work
● Code that works on both platforms can be

shared
○ Even tests!

● Code specific/optimized to each platform can
be provided separately

Client-Server Integration
● Intro to Scala.js
● Interactive Web Pages
● Cross-platform libraries
● Client-server integration
● Wrap Up

Live Coding
 Client-Server Integration

https://github.com/spray/spray-template

https://github.com/spray/spray-template
https://github.com/spray/spray-template

Client-Server Takeaways
● Wiring Scala.js into any existing project is

trivial
● Sharing code between Client/Server is

Awesome
○ Constants, algorithms, data-structures, libraries, etc.

● Type-safety makes shared code amazing
● The whole setup actually works!

Wrap Up
● Intro to Scala.js
● Interactive Web Pages
● Cross-platform libraries
● Client-server integration
● Wrap Up

Scala.js works!
● Usable for all sorts of projects

● Experience is great

● Future is promising

Things that are Not Great
● Small community

○ It’s new, after all
● Scala compiler is slowwww, std lib bloated

○ Incremental compilation/DCE helps, but still...
● No big corporate backing

○ Just two guys and some extras
● Some rough edges

○ Arguably fewer than Javascript itself ^_^

The Future is Now
● Scala.js provides multiple web-dev holy-

grails
○ Shared code between Client/Server
○ Checked interfaces between Client/Server
○ Sane, shared language between Client/Server
○ Whole-program-checked Client/Server

● Not the future, but today
○ Actually ~6 months ago

The Future is Now
javascript> ['10','10','10','10'].map(parseInt)

[10, NaN, 2, 3]

scalajs> List("10","10","10","10").map(parseInt)

List(10, 10, 10, 10)

Hands on Scala.js
Questions?

