
Scala.Rx
Scaladays 2014, Berlin

Li Haoyi
https://github.com/lihaoyi/scala.rx

https://github.com/lihaoyi/scala.rx
https://github.com/lihaoyi/scala.rx

What
● libraryDependencies += "com.scalarx" %% "scalarx" % "0.2.5"

● Scala.Rx is a change-propagation library

● Reactive values which depend on each other

● Change one and they propagate the update

Reactive values which depend on each
other

Change one and they propagate the update

Motivation

var a = 1; var b = 2

val c = a + b

println(c) // 3

a = 4

println(c) // 3

Motivation

var a = 1; var b = 2

def c = a + b

println(c) // 3

a = 4

println(c) // 6

Motivation

var a = 1; var b = 2

def c = veryExpensiveOperation(a, b)

println(c) // 3

a = 4

println(c) // 6

Motivation

var a = 1; var b = 2

def c = a + b

// onChange(c, () => ...)

a = 4

Motivation

import rx._

val a = Var(1); val b = Var(2)

val c = Rx{ a() + b() }

println(c()) // 3

a() = 4

println(c()) // 6

Motivation

import rx._

val a = Var(1); val b = Var(2)

val c = Rx{ a() + b() }

println(c()) // 3

a() = 4

println(c()) // 6

Obs(c){ ... do something... }

What

● Var: reactive variables that are set manually

● Rx: reactive values that depend on other
reactive values

● Obs: observes changes to reactive values
and does things

Why

● Most mutable state isn’t really “state”
○ Depends on other variables
○ Should be kept in sync
○ Weird things happen if it falls out of sync?

● When recalculating something, you want to
do it the same way you did it the first time

● Scala.Rx saves you from having to keep
things in sync manually

What - Observers

val a = Var(1)
var count = 0
val o = Obs(a){
 count = a() + 1
}
println(count) // 2
a() = 4
println(count) // 5

What - Propagation
val a = Var(1) // 1

val b = Var(2) // 2

val c = Rx{ a() + b() } // 3
val d = Rx{ c() * 5 } // 15
val e = Rx{ c() + 4 } // 7
val f = Rx{ d() + e() + 4 } // 26

println(f()) // 26
a() = 3
println(f()) // 38

Exceptions

val a = Var(1L)
val b = Var(2L)

val c = Rx{ a() / b() }
val d = Rx{ a() * 5 }
val e = Rx{ 5 / b() }
val f = Rx{ a() + b() + 2 }
val g = Rx{ f() + c() }

b() = 0 // uh oh

Console Demo

Scala.js Demo

Exceptions Demo

Scala.js Demo 2

How

val a = Rx{b() + c()}

● Rx.apply pushes itself onto a thread-local
stack before evaluating contents

● b.apply, c.apply look at who’s on top of
the stack and add the dependency

Propagation Strategy

● Controlled by a Propagator

● When call Var.update, how/when do its
dependencies update?

Propagation Strategy

● Propagator.Immediate: happens on
current thread, finishes before .update
returns

● Propagator.ExecContext: happens on
whatever ExecutionContext is given, .
update returns a Future[Unit]

● Both happen in roughly-breadth-first,
topological order.

Topological Order
1 2 3 4

Overall Characteristics

● Dependency graph constructed at runtime
○ No need to live in a monad
○ No need to specify what the dependencies are

● No globals, only one thread-local stack
○ Easy to use as one part of a larger program.
○ Small fragments of change-propagation in a larger

non-Scala.Rx world
○ Easily interops with non-Scala.Rx world

Limitations

● Dependency graph can change shape
○ Rxs may evaluate out of order
○ Rxs may evaluate more than once

● Thread local stack doesn’t play nicely with
Futures

● Rx initialization is blocking
○ Can’t initialize more than one in parallel

Limitations

val a = Var(1) // depth 0

val b = Rx{ a() + 1 } // depth 1

val c = Rx{ // depth 1 or 2???

 if (random() > 0.5) b() + 1

 else a() + 1

}

Limitations

val a = Rx{ ... }

val b = Rx{ Future(a()) }

Limitations

import concurrent.ExecutionContext.global

implicit val prop = {

 new Propagator.ExecContext()(global)

}

val a = Var(1)

val b = Rx{ expensiveCompute(a() + 1) }

val c = Rx{ expensiveCompute(a() + 2) }

Scope

● Useless in stateless web services

● Useless in pure-functional code

● Doesn’t support a rich event-stream API

● Doesn’t support channels, coroutines, async

Works on Android too!

// create a reactive variable
val caption = rx.Var("Olá")
// set text to “Olá”
textView <~ caption.map(text)
// text automatically updates to “Adeus”
caption.update("Adeus")

● Example taken from http://macroid.github.
io/guide/Advanced.html

● Warning: I haven't tried it myself

http://macroid.github.io/guide/Advanced.html
http://macroid.github.io/guide/Advanced.html
http://macroid.github.io/guide/Advanced.html

What

● Var: reactive variables that are set manually

● Rx: reactive values that depend on other
reactive values

● Obs: observes changes to reactive values
and does things

Past Work

● Lots of existing FRP libraries

● Most are written in Haskell
○ Or some custom dialect of Haskell
○ Or some custom dialect of Java

● None of them interop easily with “normal”
code

Future Work

● Clean up implementation
○ Internals are a big mess
○ Lots of code related to multithreading useless on

ScalaJS and should be separated out

● Experiment with a persistent file backend?
○ Currently very similar to SBT’s dataflow graph
○ ...but much easier to use
○ Maybe it’s generic enough to be useful?

If you liked the Demo
● Scala.js - 0.5.0, by sjrd and gzm0

● Scalatags - 0.3.0

● Scala.Rx - 0.2.5

● Workbench - 0.1.2

● Workbench-Example-App

http://www.scala-js.org/
https://github.com/sjrd
https://github.com/gzm0
http://www.scala-js.org/
https://github.com/lihaoyi/scalatags
https://github.com/lihaoyi/scalatags
https://github.com/lihaoyi/scala.rx
https://github.com/lihaoyi/scala.rx
https://github.com/lihaoyi/workbench
https://github.com/lihaoyi/workbench
https://github.com/lihaoyi/workbench-example-app
https://github.com/lihaoyi/workbench-example-app

Questions?

Ask me about
● Scala.React
● Multithreaded Execution Model
● Memory Modal
● Delimited Continuations
● Running on ScalaJS

