
Bootstrapping the
Scala.js Ecosystem

Li Haoyi, Scala eXchange 7 Dec 2014

What is Scala.js

● Scala.js is a Scala -> Javascript compiler

● Write code in Scala, run in the browser

● No more wallowing around in Javascript!
○ No more fat-fingered typos making it to production
○ Good toolability/tool support
○ Strong, enforceable abstractions
○ Refactorability

Scala.js
object Example extends js.JSApp{

 def main() = {

 var x = 0

 while(x < 10) x += 3

 println(x)

 // 12

 }

}

ScalaJS.c.LExample$.prototype.main__V =

(function() {

 var x = 0;

 while ((x < 10)) {

 x = ((x + 3) | 0)

 };

 ScalaJS.m.s_Predef().println__O__V(x)

 // 12

});

Problems faced in Web Dev

● Our proprietary algorithm is O(n log(n))
rather than O(n log(log(n))

● The machine-learning team can’t reliably
predict this user’s click behavior

● Nobody knows why this code works and we
are afraid to touch it

Problems faced in Web Dev

● ✘ Our proprietary algorithm is O(n log(n))
rather than O(n log(log(n))

● ✘ The machine-learning team can’t reliably
predict this user’s click behavior

● ✔ Nobody knows why this code works and
we are afraid to touch it

Javascript

Scala.js Today: the Tech

● Incremental compiles ~1s

● Dev executables ~ 1mb

● Deployed executables ~100-300kb, +5s

● Passes most of Scala’s own partest suite

● As fast as Raw Javascript

Scala.js Today: the Ecosystem

● Active Community
○ Mailing list ¾ as much traffic as scala-user

● >Dozen libraries available
○ Including Scalaz, Shapeless

● Mature platform
○ Incremental Compilation, IDE support,

binary/backward-compatibility, ...

Live Demo
Client-Server Application

Cool Things

● DOM access is type-safe

● HTML generation is type-safe

● Ajax calls are type-safe
○ And Boilerplate-free!

● Hard to accidentally screw up

To Learn More...

● Hands-on Scala.js, talk @ PNWScala
○ Cool presentation I gave

● Hands-on Scala.js E-book
○ Lots of intro material on Scala.js

● http://www.scala-js.org/
○ Main Website

http://vimeo.com/111978847
http://vimeo.com/111978847
http://lihaoyi.github.io/hands-on-scala-js
http://lihaoyi.github.io/hands-on-scala-js
http://www.scala-js.org/
http://www.scala-js.org/

Scala.js 14 Months Ago: Tech

● Dev turnaround: 30s

● Dev executables: ~20mb

● Deployable executables: 800kb, +100s

● No Tests

● >10x slower than Raw Javascript

Scala.js 14 Months Ago: Ecosystem

● No community
○ 2-3 people on the mailing list

● No libraries

● No tooling

Fancy
Demo

Scala.js

??? Fancy
DemoScala.js

Let’s talk about

The Tech

The Ecosystem

Let’s talk about

✘ The Tech

✔ The Ecosystem

Fancy Demo

Typesafety!

Things We Need

✔ Web Server (Spray)

JavaScript APIs

HTML Generation

Things We Need

✔ Web Server (Spray)

JavaScript APIs

HTML Generation

JavaScript APIs

● Can access them dynamically
○ Annoying and unsafe

● Support for typed interop facades available
○ But no such facades written

● Tool to import typescript defs as facades
○ But it doesn't work all the time

Can access them dynamically
import js.Dynamic.global

global.JSON.parse("[1, 2, 3]")

// [1, 2, 3]

Can access them dynamically
import js.Dynamic.global

global.JSON.parse("[1, 2, 3]")

// [1, 2, 3]

global.JSON.pasre("[1, 2, 3]")

// TypeError: undefined is not a function

global.JSN.parse("[1, 2, 3]")
// ReferenceError: JSN is not defined

Support for typed interop facades
object JSON extends js.Object {

 def parse(text: String): Dynamic = native

}

JSON.parse("[1, 2, 3]")

// [1, 2, 3]

JSON.pasre("[1, 2, 3]")

// Compile error: value pasre is not a member of object JSON

TypeScript => Scala
interface StyleSheet {

 disabled: bool;

 ownerNode: Node;

 parentStyleSheet: StyleSheet;

 media: MediaList;

 type: string;

 title: string;

}

class StyleSheet extends js.Object {

 def disabled: Boolean = native

 def ownerNode: Node = native

 def parentStyleSheet: StyleSheet = native

 def media: MediaList = native

 def `type`: String = native

 def title: String = native

}

Doesn’t always work

● Buggy POC

● Scala & Typescript type-systems differ
○ e.g. Typescript has literal singleton types

● Solution: just fix it manually after

JavaScript APIs

● Batch import lib.d.ts from Typescript
● Manually fix up the things that don't work
● Publish compiled, untested facades to

Maven Central as scala-js-dom

● Total work: ~4 hrs

Scala-Js-Dom

libraryDependencies +=

 "org.scala-lang.modules.scalajs" %%% "scalajs-dom" % "0.6"

???Scala.js Fancy
Demo

scala-js-dom

???Scala.js Fancy
Demo

scala-js-dom

scala-js-games

Roll

Things We Need

✔ Web Server (Spray)

✔ JavaScript APIs (scala-js-dom)

HTML Generation

HTML Generation

● Games don't need HTML but websites do

● Options:
○ Cross-compile a Scala templating library
○ Write a wrapper for a JS templating library
○ Spend all day concatting strings

What didn't work

● Cross compiling Twirl, Scalate
○ Java dependencies

● Javascript templating libraries?
○ Won’t run on a Scala server

● Concatting strings
○ Just asking for XSS vulnerabilities

Cross compiling Scalate
<dependency>

 <groupId>javax.servlet</groupId>

 <artifactId>servlet-api</artifactId>

 <version>${servlet-api-version}</version>

</dependency>

<dependency>

 <groupId>com.sun.jersey</groupId>

 <artifactId>jersey-server</artifactId>

 <version>${jersey-version}</version>

</dependency>

Concatting Strings
document.innerHTML = "<h1>Hello " + name + "!</h1>"

...

name = "<script>alert('uve R pwnzed')</script>"

Scalatags

● Existing, Pure Scala library

● No separate template files to load

● Zero dependencies

Scalatags
val frag = html(

 head(

 script(src:="..."),

 script("alert('Hello’)")

),

 body(

 div(

 h1(id:="title", "My title"),

 p("Paragraph of text")

)

)

)

<html>

 <head>

 <script src="..."></script>

 <script>alert('Hello')</script>

 </head>

 <body>

 <div>

 <h1 id="title">My title</h1>

 <p>Paragraph of text</p>

 </div>

 </body>

</html>

Scalatags
// Scala.js

libraryDependencies +=

 "com.scalatags" %%% "scalatags" % "0.4.2"

// Scala-JVM

libraryDependencies +=

 "com.scalatags" %% "scalatags" % "0.4.2"

Scala.js Fancy
Demo

scala-js-dom

scala-js-games

Roll
Scalatags

Things We Need

✔ Web Server (Spray)

✔ JavaScript APIs (scala-js-dom)

✔ HTML Generation (Scalatags)

What Next?

● We have HTML generation

● We have DOM APIs like XMLHttpRequest

● How do we make the Ajax calls
typechecked?

Things We Need

✔ Web Server (Spray)

✔ JavaScript APIs (scala-js-dom)

✔ HTML Generation (Scalatags)

Type safe Ajax Routing

But Wait...

● Ajax calls involve Data

● Data needs to get sent between client &
server

● Manually construction {JSON, XML, CSV}
blobs sucks

Things We Need

✔ HTML Generation (Scalatags)

✔ Web Server (Spray)

✔ JavaScript APIs (scala-js-dom)

Type safe Ajax Routing

Data Serialization Library

Requirements

● No Reflection

● Pure Scala
○ No Java
○ No Javascript

● Handles case classes

Things that don't Work

● Java serialization (Java)
● Kryo (Reflection)
● Play Json (Jackson/Java/Reflection)
● Spray Json (no case classes)
● Scala-Pickling (Reflection)

● ...

Basic Difficulty

● How to serialize case classes without
Reflection?

● Need some way of breaking alpha
equivalence

Basic Difficulty

● How to serialize case classes without
Reflection?

● Need some way of breaking alpha
equivalence

● Macros!

Writing my own: uPickle

● Basically Spray JSON with a macro for case
classes

● ~1000 LOC
● Initially a pure-Scala (shared) JSON parser

○ Now JSON.parse in Scala.js, Jawn in Scala-jVM

● That was easy

Scala-Js-Dom

libraryDependencies += "com.lihaoyi" %%% "upickle" % "0.2.5"

libraryDependencies += "com.lihaoyi" %% "upickle" % "0.2.5"

Scala.js Fancy
Demo

scala-js-dom

scala-js-games

Roll
Scalatags uPickle

But wait...

● It cross compiles, but how do we know it
works?

● For that matter, how do we know that
Scalatags works?

Testing Options on Scala.js

● Blind Faith

● Manual Testing

● Jasmine

How Scalatags was tested
https://github.com/scala-js/scala-js/issues/96
...
For scalatags, this basically involved copying and pasting
the body of the unit tests into a separate project,
optimizeJSing, and opening up my index.html in chrome
to verify manually that it continues to do the right thing.
...

https://github.com/scala-js/scala-js/issues/96
https://github.com/scala-js/scala-js/issues/96
https://github.com/lihaoyi/scalatags

Things We Need

HTML Generation (Scalatags)
Web Server (Spray)
JavaScript APIs (scala-js-dom)
Type safe Ajax Routing
Data Serialization Library (uPickle)
Testing Framework

We need a Test Suite

● Manual testing libraries via C&Ping to
example projects doesn't scale

● We already have one!
○ But it uses ScalaTest and only runs on Scala-JVM

What if...

We cross compile ScalaTest?

We cross-compile some subset of ScalaTest?

Find some other testing library?

Problem: ScalaTest is huuuge

Problem: ScalaTest uses Java sources

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface Finders {

 String[] value();

}

Problem: ScalaTest uses tons of Reflection

val fieldOption =

 objectWithProperty.getClass.getFields.find(isFieldToAccess)

val methodOption =

 objectWithProperty.getClass.getMethods.find(isMethodToInvoke)

val getMethodOption =

 objectWithProperty.getClass.getMethods.find(isGetMethodToInvoke)

What if...

We cross compile ScalaTest?

We cross-compile some subset of
ScalaTest?

Find some other testing library?

package org.scalatest

import scala.scalajs.test.JasmineTest

class FreeSpec extends JasmineTest {

 implicit class SuperString(s: String){

 def in(thunk: => Unit) = {

 it(s)(thunk)

 }

 def -(thunk: => Unit) = {

 describe(s)(thunk)

 }

 }

}

It Works!
package scalatags

import org.scalatest._

class BasicTests extends FreeSpec{

 "basic tag creation" in {

 assert(a.toString === "<a/>")

 assert(html.toString === "<html/>")

 ...

 }

 ...

}

But...

● Super sketchy
○ What if the semantics differ?

● Only supports a very narrow subset of the
API
○ Probably exactly the subset I want
○ ...but not the subset someone else would want
○ Not obvious what this subset is

What if...

We cross compile ScalaTest?

We cross-compile some subset of ScalaTest?

Find some other testing library?

Find some other testing library?

● Specs2 had much of the same problem

● Scalacheck is much more special purpose

● JUnit, test-ng, etc. are all out because Java

What if...

We cross compile ScalaTest?

We cross-compile some subset of ScalaTest?

Find some other testing library?

Writing my own

Writing my own:

µTest 0.2.4
uTest (pronounced micro-test) is a lightweight testing library for Scala. Its key features

are:

● Less than 1000 lines of code
● A fancy set of macro-powered asserts
● A unique execution model
● Integration with SBT
● Cross compiles to ScalaJS
● Parallel testing

https://github.com/lihaoyi/utest/graphs/contributors
https://github.com/lihaoyi/utest/graphs/contributors
https://github.com/lihaoyi/utest#macro-asserts
https://github.com/lihaoyi/utest#macro-asserts
https://github.com/lihaoyi/utest#execution-model
https://github.com/lihaoyi/utest#execution-model
https://github.com/lihaoyi/utest#running-tests-with-sbt
https://github.com/lihaoyi/utest#running-tests-with-sbt
https://github.com/lihaoyi/utest#scalajs
https://github.com/lihaoyi/utest#scalajs
https://github.com/lihaoyi/utest#parallel-testing
https://github.com/lihaoyi/utest#parallel-testing

uTest
package mytests

object MyTestSuite extends TestSuite{

 val tests = TestSuite{

 'myTest - {

 val a = 1

 val b = 2

 assert(a == b)

 }

 }

}

Writing my own: uTest

● Basically ScalaTest’s Freespec + 2-3 asserts
● Written once and cross compiled
● Leaves out all the misc. things I don't need
● ~1000 LOC

● That was easy

uTest

libraryDependencies += "com.lihaoyi" %%% "utest" % "0.2.4"

libraryDependencies += "com.lihaoyi" %% "utest" % "0.2.4"

Scala.js Fancy
Demo

scala-js-dom

scala-js-games

Roll
Scalatags uPickle

uTest

Things We Need

✔ Web Server (Spray)
✔ JavaScript APIs (scala-js-dom)
✔ HTML Generation (Scalatags)
Type safe Ajax Routing
✔ Data Serialization Library (uPickle)
✔ Testing Framework (uTest)

What's Routing All About

● Call some method in some file with some
arguments, return some value

What's Routing All About

● Call some method in some file with some
arguments, return some value

● The rest of the features routing engines
provide are purely cosmetic

What's Routing All About

● Call some method in some file with some
arguments, return some value

● The rest of the features routing engines
provide are purely cosmetic

● Don't need them for Ajax routes

Autowire: macro-based routing
trait Api{

 def endpoint(name: String, count: Int): Seq[String]

}

ajax[Api].endpoint("hello", 123).call(): Future[Seq[String]]

// becomes

ajax.makeRequest[Seq[String]](

 Seq("Api", "endpoint"),

 Map("name" -> ajax.write("hello"), "count" -> ajax.write(123))

)

Autowire: macro-based routing
router.route[Api](cont)

// becomes

{ case Request(Seq("Api", "endpoint"), args) =>

 router.write(cont.endpoint(

 router.read[String](args("name")),

 router.read[Int](args("count"))

))

 ...

}

Autowire: macro-based routing
// Shared

trait Api{

 def endpoint(name: String, count: Int): Seq[String]

}

// Server

router.route[Api](new Api{

 def endpoint(name: String, count: Int) = ...

})

// Client

ajax[Api].endpoint("hello", 123).call()

One place to get it right

● Actual transport layer is left up to you to
implement
○ ajax.read, ajax.write, ajax.makeRequest
○ router.read, router.write

● If you mess up, things will fail at runtime
○ But only need to get it right once
○ After that, all Ajax calls will be safe
○ read and write calls are trivial using uPickle

Autowire: Safety!
ajax[haoyi.Controller].endpoin("hello", 123).call()

// Compile error: value endpoin is not a member of Controller

ajax[haoyi.Controller].endpoint("hello", "123").call()

// Compile error: type mismatch; found: String; required: Int

val x: Seq[String] =

 ajax[haoyi.Controller].endpoint("hello", 123).call()
// Compile error: type mismatch;

// found: Future[Seq[String]]

// required: Seq[String]

Autowire: Safety!
// OK

for(res <- ajax[haoyi.Controller].endpoint("hello", 123).call()){

 doStuff(res: Seq[String])

}

// OK

val future1 = ajax[haoyi.Controller].endpoint("hello", 123).call()

val future2 = ajax[haoyi.Controller].endpoint("你好", 888).call()

for (res1 <- future1; res2 <- future2){

 doStuff(res1, res2)

}

Autowire

● Type-safe, boilerplate-free RPCs calls
between Client & Server

● Returns a Future[T], so impossible to mis-
use

● Interestingly, does not depend on uPickle
○ Can be used on Scala-JVM with Kryo, pickling, etc.

● 435 LOC

Autowire

libraryDependencies += "com.lihaoyi" %%% "autowire" % "0.2.3"

libraryDependencies += "com.lihaoyi" %% "autowire" % "0.2.3"

Things We Need

✔ Web Server (Spray)
✔ JavaScript APIs (scala-js-dom)
✔ HTML Generation (Scalatags)
✔ Type safe Ajax Routing (Autowire)
✔ Data Serialization Library (uPickle)
✔ Testing Framework (uTest)

Scala.js Fancy
Demo

scala-js-dom

scala-js-games

Roll
Scalatags uPickle

uTest Autowire

cgta/
otest

cgta/
open japgolly/

scalajs-react

antonkulaga/
scala-js-binding

benhutchison/
pricklegreencatsoft/

scalajs-angular

Scala.Rx

japgolly/
monocle

japgolly/
scalaz

rickynils/
scalacheck

alexander-myltsev/
shapeless, parboiled2

shadaj/
collidium

Properties of the Scala.js Ecosystem

● Roughly breaks down into Javascript
wrappers, and cross-built code

● No BS, minimal-dependency libraries
○ BS dependencies don’t exist in Scala.js
○ Servlets, Reflection, Classloaders, etc.

● No large frameworks (yet?)

Moral of the story?

● It takes quite a lot of effort to go from
"working compiler" to "cool demo"

Moral of the story?

● It takes quite a lot of effort to go from
"working compiler" to "cool demo"

● Writing things yourself ain't so bad

Moral of the story?

● It takes quite a lot of effort to go from
"working compiler" to "cool demo"

● Writing things yourself ain't so bad

● If you are trapped on a desert island with
nothing but a compiler, first thing to build is a
testing framework

Bootstrapping the
Scala.js Ecosystem

Questions?

To Learn More...

● Hands-on Scala.js, talk @ PNWScala
○ Cool presentation I gave

● Hands-on Scala.js E-book
○ Lots of intro material on Scala.js

● http://www.scala-js.org/
○ Main Website

http://vimeo.com/111978847
http://vimeo.com/111978847
http://lihaoyi.github.io/hands-on-scala-js
http://lihaoyi.github.io/hands-on-scala-js
http://www.scala-js.org/
http://www.scala-js.org/

