
Beyond Bash
Shell scripting in a typed, OO language

Scala by the Bay, 15 August 2015
Slides: http://tinyurl.com/beyondbash

http://tinyurl.com/beyondbash

0.1 Who am i

Li Haoyi

Paid $ to work on dev tools @ Dropbox

Not paid $ to work on Scala.js

Using Scala professionally since… never

0.2 Agenda

● 0.x: Agenda
● 1.x: Bash
● 2.x: Ammonite-Ops
● 3.x: Ammonite-REPL
● 4.x: Conclusion
● 5.x: Q&A

0.3 Problem Statement

“How can we stop using the worst languages in
the world to build our most important
infrastructure?

1.1 Application Architecture

ServerClient

Client

Database

Server
Safe

ty
May

be

Safe
ty?

DANGER
DANGER

DANGER
DANGER

1.2 Application Architecture

ServerClient

Client

Database

Server
Safe

ty
May

be

Safe
ty?Safe

ty

Safe
ty

1.3 Scala.js!

Javascript: Problem solved

Scala.js works

Check it out if you haven't

http://www.scala-js.org/

http://www.scala-js.org/
http://www.scala-js.org/

1.3 Scala.js!

● Casting is great elem.asInstanceOf[html.Input]
○ In Javascript, every expression is a cast!

● Weird, unsound behavior is fine
○ As long as it’s less weird/unsound than Javascript

● Best-effort error-handling is outstanding
○ Javascript doesn’t put in effort at all

Bad when better than
worse is excellent

1.4 Application Architecture

ServerClient

Client

Database

Server
Safe

ty
May

be

Safe
ty?Safe

ty

Bash, Python, Puppet,
Ruby, Vagrant...

Safe
ty

DANGER

1.5 Danger Below!

High-performance, type-safe application code

High-performance, type-safe web front-end

Underpinned by a mix of Bash, Python, Ruby,
Puppet, Vagrant, ...

1.5 Danger Below!

Hard to test!

Not typechecked!

Worst consequences for errors

1.5 Danger Below!

ServerClient

Client

Database

Server

Ok
Ok

Bash, Python, Puppet,
Ruby, Vagrant...

Ok

Ok

Down

1.5 Danger Below!

ServerClient

Client

Database

Server

Ok
Ok

Ok

Ok

Down

Down

Down

Bash, Python,
Puppet, Ruby,

Vagrant... Ok

1.5 Danger Below!

ServerClient

Client

Database

Server

Ok
Ok

Ok

Ok

Down

Down

Down Down
Bash, Python,
Puppet, Ruby,

Vagrant...

bash$

1.6 What's wrong with Bash?

● Obscure syntax if [[$? -eq 0]] if [[$? -eq 0]]
○ Even though you use it every day for 10 yrs

● Everything is global
○ Everything is spooky!

● Everything is a String

● Even basic math/logic is incredibly difficult

1.7 What's wrong with Bash?
Run a script on all files with some extension

find . -name '*.ext' | while IFS=$'\n' read -r FILE; do

 process "$(readlink -f "$FILE")" || echo "error processing: $FILE"

done

find . -name '*.ext' \(-exec ./some_other_script "$PWD"/{} \; -o -print \)

find . -name '*.ext' -exec ./some_other_script "$PWD"/{} \;

http://stackoverflow.com/questions/4410412/bash-processing-recursively-through-all-files-in-a-directory

It seems to work
???

Incorre
ct

???

Good Solution!???

“It seems to work”
Such a high degree of confidence!

Why do people use Bash
Can we use something else?

Sample use case

● List the things in my current folder

● Look at my current git

● Make a folder with a file inside

● Delete the folder

Why do people use Bash
Can we use something else?

No

Bash is Better

1.9 Bash vs Scala
rm -rf folder/inner_dir def removeAll(path: String) = {

 def rec(f: File): Seq[File] =

 f.listFiles

 .filter(_.isDirectory)

 .flatMap(rec)

 .++(f.listFiles)

 for(f <- rec(new File(path))){

 if (!f.delete())

 throw new RuntimeException()

 }

}

removeAll("folder/inner_dir")

1 line 24 chars

12 lines 279 chars

1.10 Bash vs Python
rm -rf folder/inner_dir import shutil

shutil.rmtree('folder/my_file.jpg')

1 line 24 chars 2 lines 50 chars

import subprocess

subprocess.check_call(["git", "status"])
git status

1.11 Bash vs Python: Round 2

1 line 10 chars 2 lines 60 chars

Important Bits
Dumb Noise

1.12 Bash is Better

Less syntactic ceremony cp fileB fileB

Common operations are short ls

Fewer keystrokes overall

Commands do what you want rm -rf folder
Very Important!

Ammonite-Ops
Rock-solid filesystem ops in Scala

"com.lihaoyi" %% "ammonite-ops" % "0.4.5"

2.1 Ammonite-Ops

● Goals:
○ No more than 2x as verbose as Bash
○ Safer than working with Python or java.{io, nio}

● Non-Goals!
○ Monadic pure dependent-typed safety
○ Reactive manifesto accreditation
○ 50-year enterprise maintainability

2.2 Ammonite-Ops
git status

rm folder/my_file.jpg

%git 'status

rm! 'folder/"my_file.jpg"

1 line 10 chars

1 line 21 chars

1 line 12 chars

1 line 25 chars

2.3 A Taste of Ammonite
import ammonite.ops._

// Delete a file or folder

rm! cwd/'folder

// Make a folder named "folder"

mkdir! cwd/'folder

// Copy a file or folder

cp(cwd/'folder, cwd/'folder1)

// List the current directory

val listed = ls! cwd

Short commands that
mirror Bash

That do what you
want!

No ambiguity in
parsing arguments

2.4 A Taste of Ammonite
// List the current directory

val listed: Seq[Path] = ls! cwd

// Commands return normal values

// you can process normally

for(path <- listed){

 println(path)

 // paths are proper data-structures

 // with attributes, methods, etc.

 if (path.ext == "tmp") rm! path

}

Values are typed,
structured data

No string munging
trying to do simple
tasks!

2.5 Piping
things | f -> things map f

things || f -> things flatMap f

things |? f -> things filter f

things |& f -> things reduce f

things |! f -> things foreach f

things |> f -> f(things)

f! thing -> f(thing)

Traversable

Any
T => V

2.6 Putting it Together

● Concise filesystem operations
○ ls! cwd

● Structured, concise path operations
○ ls! cwd/'src/'main

● Pipes as aliases for collection methods
○ ls! cwd/'src/'main |? (_.ext == "scala") | (_.size) sum

2.7 Putting it Together
Recursive line count of Javascript files

find ./dir -name '*.js' | xargs wc -l

ls.rec! cwd/'dir |? (_.ext == "js") | read.lines | (_.size) sum

38 chars

64 chars

2.8 Putting it Together
List dot-files *only*

ls -a | grep "^\."

ls! cwd |? (_.last(0) == '.')

19 chars

30 chars

2.9 Putting it Together
Largest 7 files in the current directory

find . -ls | sort -nrk 7 | head -7

ls.rec! cwd | (x => x.size -> x) sortBy (-_._1) take 7

35 chars

55 chars

● Easy, convenient filesystem ops in Scala!

● (Almost) as concise as Bash ls! cwd
○ Definitely less typing than java.io/nio

● Clean, structured data-model
○ Paths. Are. Not. Strings! cwd/'src/'main/"file.txt"
○ Results from commands aren’t strings either

2.10 Ammonite-Ops

2.11 This begs the question...

Can we use Ammonite-Ops + Scala-REPL as
our default shell?

Let’s try contributing some changes to https:
//github.com/lihaoyi/demo

https://github.com/lihaoyi/wootjs
https://github.com/lihaoyi/wootjs
https://github.com/lihaoyi/wootjs

No

2.12 No

● Echo-ed output is unreadable

● Ctrl-C kills everything; bye bye work!

● Can’t subprocess out w/o borking JLine

● http://lihaoyi.github.io/Ammonite/#OtherFixes

http://lihaoyi.github.io/Ammonite/#OtherFixes
http://lihaoyi.github.io/Ammonite/#OtherFixes

Ammonite-REPL
Re-inventing the Scala REPL

3.1 Ammonite-REPL

● Goal
○ You should not need to exit the REPL

● How often do you need to restart Bash?

3.2 Using the Ammonite REPL
Standalone Executable

curl -L -o amm https://git.io/v3E3V; chmod +x amm; ./amm

// SBT project

libraryDependencies += (

 "com.lihaoyi" % "ammonite-repl" % "0.4.5" % "test"

 cross CrossVersion.full

)

initialCommands in (Test, console) :=

 """ammonite.repl.Repl.run("")""" // sbt test/console

Live Demo
Whee!

3.3 Fun Features

● Great pretty-printing

● Syntax-highlighted everything!

● Ctrl-C Interruptible

● Live-loading modules from maven central

● Multi-line editing!

3.4 Ammonite-REPL

● A strictly-better Scala REPL

● Usable in any SBT project

● Or standalone

3.5 This begs the question...

Can we use Ammonite-Ops + Ammonite-REPL
as our default shell?

Let’s try contributing some changes to https:
//github.com/lihaoyi/wootjs

https://github.com/lihaoyi/wootjs
https://github.com/lihaoyi/wootjs
https://github.com/lihaoyi/wootjs

3.6 Ammonite-REPL

● Scala-REPL is not a plausible systems shell

● Ammonite-REPL is!

● (Possibly)

● You can do real work in it

3.7 Work In Progress

● Extensible Autocomplete
○ Already autocomplete properties, names in scope
○ Need to autocomplete filesystem paths
○ Nice to have autocomplete for ivy coordinates, etc.

● Fetch scaladoc, source to show in-terminal

● Windows support for Ammonite-REPL
○ Ammonite-Ops already works

Conclusion
WTF did we just do?

4.1 Ammonite...

Ammonite-Ops
Really-nice Filesystem Library

Ammonite-REPL
Really-nice Scala REPL

Bash
Replacement?

4.2 Ammonite...

● Re-implemented much of Bash’s
functionality in Scala

● Twisted Scala’s syntax into a weird, bash-
like form

● Re-implemented the Scala REPL to make
this work

Why?
Did we need to do so many things?

4.3 Why Not...

● Make Bash less unsafe?

● Make Python less verbose?

● Improve on java.io or java.nio?

4.4 Space of Possible Systems APIs
D

an
ge

r

Verbosity

java.io
java.nio

Bash

Python
FP, Inferred Types, ...

Ammonite

Plains of Diminished Returns

Cliffs of Insanity

4.5 Problems w/ Scala as your Shell

● JVM takes time to boot up!
○ 3-4s startup time
○ Not just JVM boot but classloading, etc.

● 3-4s first command compile
○ 0.2-0.3s compile overhead after warmup

● Bash takes ~0.004s to boot, Python ~0.03s

● Jar is 30mb, jar + JVM is >100mb

4.6 Hopefully free improvements

● Java 9 w/ modules will help JDK size/speed
○ Can bundle minimal JVM for smaller executable
○ Fewer classes to load on boot

● Dotty would (hopefully) speed compilation
○ At least it can’t get much slower, right? Right?...

● Dotty Linker would help overall
○ Should cut down the amount of stuff to load/JIT

5.0 Application Architecture

ServerClient

Client

Database

Server
Safe

ty
May

be

Safe
ty?

Bash, Python, Puppet,
Ruby, Vagrant...DANGER

DANGER

DANGERD
ANGER

DANGER

DANGER

5.1 Application Architecture

ServerClient

Client

Database

Server
Safe

ty
May

be

Safe
ty?Safe

ty

Bash, Python, Puppet,
Ruby, Vagrant...DANGER

Safe
ty

5.2 Application Architecture

ServerClient

Client

Database

Server
Safe

ty
May

be

Safe
ty?Safe

ty

Ammonite-Ops Ammonite-REPL
Safe

ty
Safe

ty

5.3 Beyond Bash

● http://lihaoyi.github.io/Ammonite/

● "com.lihaoyi" %% "ammonite-ops" % "0.4.5"

● curl -L -o amm https://git.io/v3E3V; chmod +x amm; ./amm

● Questions?

http://lihaoyi.github.io/Ammonite/
http://lihaoyi.github.io/Ammonite/

Additional Slides

2.5 Absolute Paths & RelPaths
case class Path(segments: Seq[String])

case class RelPath(segments: Seq[String], ups: Int)

Absolute

Any ..s at the
start of the path

2.6 Constructing Paths
> root

/

> root/'usr/'bin

/usr/bin

> 'src/'main

src/main

> up/up/'src/'main

../../src/main

Paths are constructed
using / and...
- Segments

- Strings
- Symbols

- Builtins
- root: Path
- cwd: Path
- up: RelPath

2.7 Combining Paths
> val rel = 'src/'main

src/main

> val wd = root/'Users/'lihaoyi

/Users/lihaoyi

> wd/rel

/Users/lihaoyi/src/main

> wd/rel/up

/Users/lihaoyi/src

Paths can be stitched
together using /

Paths are normalized
at every step!

not /Users/lihaoyi/src/..

2.8 Invalid Paths
> val rel: RelPath = 'src/'main

> val abs: Path = root/'usr/'bin

> abs/rel

/usr/bin/src/main

> rel/abs

<console>:15: error: type mismatch;

> rel/rel

src/main/src/main

> abs/abs

<console>:14: error: type mismatch;

Combining Paths &
RelPaths improperly is
a compilation error

> rel = "???"

> abs = "???"

> abs + "/" + rel

> abs + rel

> "/" + abs + rel

> "/" + abs + "/" + rel

> rel + abs

// correct but annoying to write

> os.path.join(abs, rel)

2.9 Invalid Paths
> val rel: RelPath = 'src/'main

> val abs: Path = root/'usr/'bin

> abs/rel

/usr/bin/src/main

> rel/abs

<console>:15: error: type mismatch;

> rel/rel

src/main/src/main

> abs/abs

<console>:14: error: type mismatch;

